Diffractive vector and scalar integrals for bistatic radio holographic remote sensing
نویسندگان
چکیده
[1] We introduce new vector diffractive integrals, which can be used for the radio holographic remote sensing of the atmosphere and terrestrial surfaces. These integrals are exact relationships connecting the electromagnetic fields known at some interface or curve in space with radio fields on the terrestrial surface or inside the atmosphere. They allow one to restore the radio image of the atmosphere or Earth surface in the investigated regions using a radio hologram registered in space by a small instrument installed on the low Earth orbit satellite. The high-precision radio signals of the Global Positioning System (GPS) navigational satellites can be used as a source of the radio emission for radio holograms. We indicated a connection between the vector diffractive integrals and scalar diffractive integral, which is now applied for the GPS occultation investigation of Earth’s atmosphere under an assumption of the spherical symmetry. For the atmosphere itself the accuracy of the scalar theory corresponds to the accuracy of the GPS occultation measurements. The most significant factor that affects the polarization is the reflection from the surface. The use of vector theory can thus be useful for the investigation of Earth’s atmosphere by detecting the reflected rays. We show that the reference signal needed for restoration of the radio field from the registered radio hologram is coinciding with the Green function of the scalar wave equation corresponding to a three-dimensional inhomogeneous medium. This substantiates the radio holographic–focused synthetic aperture principle (RFSA) in its application to the atmosphere and surface research. We validated the high vertical resolution of the RFSA method by obtaining radio image of the atmosphere and Earth’s surface. Zverev’s diffractive integral is used to compare the canonical transform (CT), back propagation (BP), and RFSA methods. For comparison, a general inverse operator (GIO) is introduced. The CT and BP transforms can be obtained by application of the GIO transform to Zverev’s diffractive integral. The CT method can resolve physical rays in multipath situations under an assumption of the global spherical symmetry of the atmosphere and ionosphere. The RFSA method can account for the multipath in the case when the global spherical symmetry is absent by using the appropriate model of the refractivity and has a promise to be effective for operational data analysis.
منابع مشابه
HF Radar Bistatic Measurement of Surface Current Velocities: Drifter Comparisons and Radar Consistency Checks
We describe the operation of a bistatic HF radar network and outline analysis methods for the derivation of the elliptical velocity components from the radar echo spectra. Bistatic operation is illustrated by application to a bistatic pair: Both remote systems receive backscattered echo, with one remote system in addition receiving bistatic echoes transmitted by the other. The pair produces ell...
متن کاملGeometric Polarimetry - Part II: The Antenna Height Spinor and the Bistatic Scattering Matrix
This paper completes the fundamental development of the basic coherent entities in Radar Polarimetry for coherent reciprocal scattering involving polarized wave states, antenna states and scattering matrices. The concept of antenna polarization states as contravariant spinors is validated from fundamental principles in terms of Schelkunoff’s reaction theorem and the Lorentz reciprocity theorem....
متن کاملNon-Cooperative Bistatic SAR Clock Drift Compensation for Tomographic Acquisitions
In the last years, an important amount of research has been headed towards the measurement of above-ground forest biomass with polarimetric Synthetic Aperture Radar (SAR) tomography techniques. This has motivated the proposal of future bistatic SAR missions, like the recent non-cooperative SAOCOM-CS and PARSIFAL from CONAE and ESA. It is well known that the quality of SAR tomography is directly...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملGPS radio holography as a tool for remote sensing of the atmosphere, mesosphere, and terrestrial surface from space
GPS radio occultation (RO) signals are highly coherent and precise, and thus sufficient for holographic investigation of the atmosphere, ionosphere, and the Earth’s surface from space. In principle, three-dimensional radio-holographic remote sensing is possible by using new radio holographic equations to retrieve the radio field within the atmosphere from a radio field known at some interface o...
متن کامل